Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\vec{a}=6 \vec{i}-3 \vec{j}-6 \vec{k}$ and $\vec{d}=\vec{i}+\vec{j}+\vec{k}$. Suppose that $\vec{a}=\vec{b}+\vec{c}$ where $\vec{b}$ is parallel to $\vec{d}$ and $\vec{c}$ is perpendicular to $\vec{d}$. Then $\vec{c}$ is
MathematicsVector AlgebraKVPYKVPY 2015 (SB/SX)
Options:
  • A $\mathrm 5 \vec{i}-4 \vec{j}-\vec{k}$
  • B $7 \vec{i}-2 \vec{j}-5 \vec{k}$
  • C $\mathrm 4 \vec{i}-5 \vec{j}+\vec{k}$
  • D $\mathrm 3 \vec{i}+6 \vec{j}-9 \vec{k}$
Solution:
1321 Upvotes Verified Answer
The correct answer is: $7 \vec{i}-2 \vec{j}-5 \vec{k}$
$\vec{a}=6 \vec{i}-3 \vec{j}-6 \vec{k}$
$\vec{d}=\vec{i}+\vec{j}+\vec{k}$ $\vec{a}=\vec{b}+\vec{c}$
$\vec{b}=\lambda \vec{d} \quad \& \quad \vec{c} \cdot \vec{d}=0$ $\vec{b}=\lambda \hat{i}+\lambda \hat{j}+\lambda \hat{k}$ From $(1)$ $6 \hat{i}-3 \hat{j}-6 \hat{k}=\lambda \hat{i}+\lambda \hat{j}+\lambda \hat{k}+\vec{c}$ $\vec{c}=(6-\lambda) \hat{i}-(3+\lambda) \hat{j}-(6+\lambda) \hat{k}$ $\vec{c} \cdot \vec{d}=0$ $\Rightarrow \lambda=-1$ $\vec{c}=7 \hat{i}-2 \hat{j}-5 \hat{k}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.