Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $|\bar{a}|=7,|\bar{b}|=11,|\bar{a}+\bar{b}|=10 \sqrt{3}$
What is the angle between $(\bar{a}+\bar{b})$ and $(\bar{a}-\bar{b})$ ?
MathematicsVector AlgebraNDANDA 2014 (Phase 1)
Options:
  • A $\frac{\pi}{2}$
  • B $\frac{\pi}{3}$
  • C $\frac{\pi}{6}$
  • D None of these
Solution:
2123 Upvotes Verified Answer
The correct answer is: None of these
Let angle between $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ be $\alpha$
$\cos \alpha=\frac{(\vec{a}+\vec{b})(\vec{a}-\vec{b})}{|\vec{a}+\vec{b} \| \vec{a}-\vec{b}|}$
$=\frac{(7)^{2}-(11)^{2}}{10 \sqrt{3} \times 2 \sqrt{10}}=\frac{(7+11)(7-11)}{20 \sqrt{3} \times \sqrt{10}}=\frac{-18}{5 \sqrt{30}}$
$=\frac{-6 \times 3}{5 \sqrt{30}} \times \frac{\sqrt{30}}{\sqrt{30}}=-\frac{3 \sqrt{30}}{25}$
$\alpha=\cos ^{-1}\left(\frac{-3}{5} \sqrt{\frac{6}{5}}\right)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.