Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathrm{A}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)$ and $\mathrm{B}=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)$ be two points in the plane with integer coordinates. Which one of the following is not a possible value of the distance between $\mathrm{A}$ and $\mathrm{B}$ ?
Options:
Solution:
2177 Upvotes
Verified Answer
The correct answer is:
$\sqrt{83}$
$$
\mathrm{AB}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}}
$$
Square $+$ Square $=\sqrt{65}$ possible when $=64+1$
$$
\begin{array}{l}
\sqrt{74}=49+25 \\
\sqrt{97}=81+16
\end{array}
$$
But $\sqrt{83}$ not possible
\mathrm{AB}=\sqrt{\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right)^{2}+\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right)^{2}}
$$
Square $+$ Square $=\sqrt{65}$ possible when $=64+1$
$$
\begin{array}{l}
\sqrt{74}=49+25 \\
\sqrt{97}=81+16
\end{array}
$$
But $\sqrt{83}$ not possible
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.