Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \(A\) and \(B\) are orthogonal matrices and \(\operatorname{det} A+\operatorname{det} B=0\). Then
MathematicsDeterminantsWBJEEWBJEE 2023
Options:
  • A \(A+B\) is singular
  • B \(A+B\) is non-singular
  • C \(A+B\) is orthogonal
  • D \(A+B\) is skew symmetric
Solution:
1190 Upvotes Verified Answer
The correct answer is: \(A+B\) is singular
Hint: \(A A^{\top}=I\) and \(B B^{\top}=I\)
\(\Rightarrow \operatorname{det}\left(A A^{\top}\right)=1\) and \(\operatorname{det}\left(B B^{\top}\right)=1\)
\(\operatorname{det}(A)=-\operatorname{det}(B)\) (Given) \( \Rightarrow(\operatorname{det}(A))^2=1 \Rightarrow(\operatorname{det}(B))^2=1\)
\(\therefore \operatorname{det}(A+B)=\operatorname{det}\left(A\left(B^{\top}+A^{\top}\right) B\right)\)
\(=-\operatorname{det}\left(B^{\top}+A^{\top}\right) \quad[\because(\operatorname{det}(A))(\operatorname{det}(B))=-1]\) as \(\operatorname{det}(A)=-\operatorname{det}(B)\)
\(=-\operatorname{det}(B+A)^{\top}\)
\(=-\operatorname{det}(A+B)^{\top}\)
\(=-\operatorname{det}(A+B)\)
\(\Rightarrow 2 \operatorname{det}(A+B)=0\)
\(\Rightarrow \operatorname{det}(A+B)=0\)
\(\therefore(A+B)\) is singular

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.