Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $A$ and $B$ denote the statements
A: $\cos \alpha+\cos \beta+\cos \gamma=0$
B: $\sin \alpha+\sin \beta+\sin \gamma=0$
If $\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2}$, then
MathematicsDeterminantsJEE MainJEE Main 2009
Options:
  • A
    $A$ is true and $B$ is false
  • B
    $A$ is false and $B$ is true
  • C
    both $A$ and $B$ are true
  • D
    both $A$ and $B$ are false
Solution:
2958 Upvotes Verified Answer
The correct answer is:
both $A$ and $B$ are true
$$
\begin{aligned}
& \cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)=-\frac{3}{2} \\
& \Rightarrow 2[\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)]+3=0 \\
& \Rightarrow 2[\cos (\beta-\gamma)+\cos (\gamma-\alpha)+\cos (\alpha-\beta)]+\sin ^2 \alpha+\cos ^2 \alpha+\sin ^2 \beta+\cos ^2 \beta+\sin ^2 \gamma+\cos ^2 \gamma=0 \\
& \Rightarrow(\sin \alpha+\sin \beta+\sin \gamma)^2+(\cos \alpha+\cos \beta+\cos \gamma)^2=0
\end{aligned}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.