Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $a, b$ and $c$ be three vectors satisfying $a \times b=$ $(a \times c),|a|=|c|=1,|b|=4$ and $|b \times c|=\sqrt{15}$. If $b-$

$2 \mathrm{c}=\lambda \mathrm{a},$ then $\lambda$ equals
MathematicsVector AlgebraBITSATBITSAT 2015
Options:
  • A 1
  • B -1
  • C 2
  • D -4
Solution:
1293 Upvotes Verified Answer
The correct answer is: -4
Let $\theta$ be the angle between $\mathbf{b}$ and $\mathbf{c}$. Given, $|\mathrm{b} \times \mathrm{c}|=\sqrt{15}$

$$

\begin{array}{l}

\Rightarrow|\mathrm{b} \| \mathrm{c}| \sin \theta=\sqrt{15} \\

\Rightarrow \sin \theta=\frac{\sqrt{15}}{|\mathrm{~b}| \mathrm{c} \mid} \\

\Rightarrow \sin \theta=\sqrt{\frac{15}{4 \times 1}}=\frac{\sqrt{15}}{4} \\

\quad \therefore \cos \theta=\sqrt{1-\frac{15}{16}}=\frac{1}{\sqrt{16}}=\frac{1}{4}

\end{array}

$$

Now given, $\mathrm{b}-2 \mathrm{c}=\lambda \mathrm{a} \Rightarrow\left|\mathrm{b}-2 \mathrm{c}^{2}\right|=\mid \lambda \mathrm{a}^{2}$

$$

\Rightarrow|\mathrm{b}|^{2}+4|\mathrm{c}|-4(\mathrm{~b} \cdot \mathrm{c})=\lambda^{2}|\mathrm{a}|^{2}

$$

$$

\begin{array}{l}

\Rightarrow 16+4-4|\mathrm{~b} \| \mathrm{c}| \cos \theta=\lambda^{2} \\

\Rightarrow 20-16 \cos \theta=\lambda^{2} \\

\Rightarrow 20-4=\lambda^{2} \Rightarrow \lambda^{2}=16\left(\therefore \cos \theta=\frac{1}{4}\right) \\

\Rightarrow \lambda=\pm 4

\end{array}

$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.