Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $a, b, c$ be such that $b(a+c) \times 0$
If $\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$
$+\left|\begin{array}{ccc}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|=0$
then the value of $n$ is
MathematicsDeterminantsWBJEEWBJEE 2017
Options:
  • A any integer
  • B zero
  • C any even integer
  • D any odd integer
Solution:
1769 Upvotes Verified Answer
The correct answer is: any odd integer
We have,
$\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$ + $\left|\begin{array}{ccc}a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2} a & (-1)^{n+1} b & (-1)^{n} c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$ $+\left|\begin{array}{ccc}a+1 & a-1 & (-1)^{n+2} a \\ b+1 & b-1 & (-1)^{n+1} b \\ c-1 & c+1 & (-1)^{n} c\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1\end{array}\right|$$+\left|\begin{array}{ccc}(-1)^{n+2} a & a+1 & a-1 \\ (-1)^{n+1} b & b+1 & b-1 \\ (-1)^{n} c & c-1 & c+1\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}a\left(1+(-1)^{n+2}\right) & a+1 & a-1 \\ b\left(-1+(-1)^{n+1}\right) & b+1 & b-1 \\ c\left(1+(-1)^{n}\right) & c-1 & c+1\end{array}\right|=0$
$\therefore n$ is any odd integer.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.