Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

Let a, b, cR be all non-zero and satisfies a3+b3+c3=2. If the matrix A=abcbcacab satisfies ATA=I, then a value of abc can be

MathematicsMatricesJEE MainJEE Main 2020 (02 Sep Shift 2)
Options:
  • A -13
  • B 13
  • C 3
  • D 23
Solution:
2283 Upvotes Verified Answer
The correct answer is: 13

ATA=I

abcbcacababcbcacab=100010001

a2+b2+c2ab+bc+acab+bc+acab+bc+aca2+b2+c2ab+bc+acab+bc+acab+bc+aca2+b2+c2=100010001

On comparing each element both sides, we get

a2+b2+c2=1 & ab+bc+ca=0 .........i

We know that a3+b3+c3-3abc=a+b+ca2+b2+c2-ab-bc-ac.

2-3abc=a+b+c1-0 (from equation i)

2-3abc=a+b+c .........ii

Now, we also know that a+b+c2=a2+b2+c2+2ab+bc+ca.

a+b+c2=1+20 (from equation i)

a+b+c=±1

Putting it in equation ii, we get

2-3abc=±1

3abc=21

abc=13 or abc=1

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.