Search any question & find its solution
Question:
Answered & Verified by Expert
Let \(A\) be a set containing \(n\) elements. \(A\) subset \(P\) of \(A\) is chosen, and the set \(A\) is reconstructed by replacing the elements of \(P\). A subset \(Q\) of \(A\) is chosen again. The number of ways of choosing \(P\) and \(Q\) such the \(Q\) contains just one element more than \(P\) is
Options:
Solution:
1496 Upvotes
Verified Answer
The correct answer is:
\({ }^{2 n} C_{n-1}\)
Hint : Required number of ways
\(\begin{aligned}
& ={ }^{\mathrm{n}} \mathrm{C}_0 \cdot{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \\
& ={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}
\end{aligned}\)
\(\begin{aligned}
& ={ }^{\mathrm{n}} \mathrm{C}_0 \cdot{ }^{\mathrm{n}} \mathrm{C}_1+{ }^{\mathrm{n}} \mathrm{C}_1 \cdot{ }^{\mathrm{n}} \mathrm{C}_2+\ldots+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}-1} \cdot{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \\
& ={ }^{2 \mathrm{n}} \mathrm{C}_{\mathrm{n}-1}
\end{aligned}\)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.