Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a be a vector in the plane containing vectors b=i^+2j^+k^ and c=2i^-j^+k^. If a is perpendicular to i^+j^+3k^ and its projection on b is 36, then a2=
MathematicsThree Dimensional GeometryTS EAMCETTS EAMCET 2022 (18 Jul Shift 1)
Options:
  • A 186
  • B 36
  • C 128
  • D 264
Solution:
2152 Upvotes Verified Answer
The correct answer is: 264

Let

a=a1i^+a2j^+a3k^

It is a be a vector in the plane containing vectors b=i^+2j^+k^ and c=2i^-j^+k^, therefore a, b and c are coplanar, so

a·b×c=0

a1i^+a2j^+a3k^·i^j^k^1212-11=0

a1i^+a2j^+a3k^·3i^+j^-5k^=0

3a1+a2-5a3=0   ....i

Also, a is perpendicular to i^+j^+3k^, therefore

a1i^+a2j^+a3k^·i^+j^+3k^=0

a1+a2+3a3=0   ....ii

Projection of a on b is 36, so

a·bb=36

a1i^+a2j^+a3k^·i^+2j^+k^1+4+1=36

a1+2a2+a3=18   ....iii

Solving i, ii & iii, we get

a1=-8, a2=14, a3=-2

So,

a=-8i^+14j^-2k^

a2=64+196+4=264

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.