Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a function fx be continuous in an interval a,b. Let δ>0 be a very small real number. Let ca,b be such that fc-δ<fc and fc+δ<fc for every δ>0. Let fα-δ-fαfα+δ-fα<0 αa,b and αc. Then
MathematicsApplication of DerivativesTS EAMCETTS EAMCET 2022 (18 Jul Shift 1)
Options:
  • A fx has a local maximum at c and a local minimum at α
  • B fx has a local maximum at α and a local minimum at c
  • C fx has only one local maximum at c
  • D fx has only one local minimum at c
Solution:
1710 Upvotes Verified Answer
The correct answer is: fx has only one local maximum at c

Since, fx is continuous in a,b and fc-δ<fc & fc+δ<fc, threfore following scenario is possible

Hence, fx must have local maximum at x=c.

Also,

faδfαfα+δfα<0      ...1

Case 1: When

fα-δ-fα>0 and fα+δ-fα<0

fα<fα-δ and fα+δ<fα

So, fx has neither maximum nor minima at x=α.

Case 2:

fαδfα<0 and fα+δfα>0

fαδ<fα and fαδ>fα

Here also fx has neither maxima nor minima at x=α.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.