Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a=i^+2j^+3k^ and b=i^+j^-k^. If c is a vector such that a·c=11,b·a×c=27 and b·c= -3|b|, then |a×c|2 is equal to
MathematicsVector AlgebraJEE MainJEE Main 2023 (11 Apr Shift 2)
Solution:
1251 Upvotes Verified Answer
The correct answer is: 285

Given,

a=i^+2j^+3k^,  b=i^+j^-k^,  a·c=11b·a×c=27 and b·c=-3b

Now finding, b×a we get,

b×a=i^j^k^11-1123=5i^-4j^+k^

Let c=c1i^+c2j^+c3k^

Now solving, a·c=11 we get,

c1+2c2+3c3=11 .......1

Now solving, b·c=-3b we get,

c1+c2-c3=-33

c1+c2-c3=-3  ..........2

Now solving b×a·c=27 we get,

5c1-4c2+c3=27...........3 

Now on solving equation 1, 2 & 3 we get,

c=3i^-2j^+4k^

Hence, a×c2=i^j^k^1233-2+42=14i^+5j^-8k^2

|a×c|2=142+52+82=285

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.