Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathbf{A}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$. If $\mathbf{B}$ is a vector in $X Y$ plane such that $(\mathbf{A}+\mathbf{B}) \cdot \mathbf{B}=15$ and $\mathbf{A} \cdot \mathbf{B}=6$, then $|\mathbf{B}|$ is
MathematicsVector AlgebraAP EAMCETAP EAMCET 2021 (23 Aug Shift 2)
Options:
  • A $6$
  • B $9$
  • C $15$
  • D $3$
Solution:
1726 Upvotes Verified Answer
The correct answer is: $3$
$\mathbf{A}=\hat{\mathbf{i}}+2 \hat{\mathbf{j}}$
Let $\mathbf{B}=x \hat{\mathbf{i}}+y \hat{\mathbf{j}}$
$\because(\mathbf{A}+\mathbf{B}) \cdot \mathbf{B}=15$ and $\mathbf{A} \cdot \mathbf{B}=6$
$\Rightarrow \mathbf{A} \cdot \mathbf{B}+\mathbf{B} \cdot \mathbf{B}=15$
$\begin{array}{cc}\Rightarrow & 6+|\mathbf{B}|^2=15 \\ \Rightarrow & |\mathbf{B}|^2=15-6=9 \\ \Rightarrow & |\mathbf{B}|=3\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.