Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathbf{a}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}, \mathbf{b}=\mathbf{i}-\mathbf{j}+\mathbf{k}, \mathbf{c}=\mathbf{i}+\mathbf{j}-\mathbf{k}$. A vector in the plane of $\mathbf{a}$ and $\mathbf{b}$ has projection $\frac{1}{\sqrt{3}}$ on c. Then, one such vector is
MathematicsThree Dimensional GeometryAP EAMCETAP EAMCET 2012
Options:
  • A $4 \mathbf{i}+\mathbf{j}-4 \mathbf{k}$
  • B $3 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$
  • C $4 \mathbf{i}-\mathbf{j}+4 \mathbf{k}$
  • D $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$
Solution:
2189 Upvotes Verified Answer
The correct answer is: $2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$
Since, vectors $\mathbf{a}$ and $\mathbf{b}$ are in a same plane.
$\begin{aligned} \therefore \mathbf{r} & =\mathbf{a}+t \mathbf{b} \\ & =(\mathbf{i}+2 \mathbf{j}+\mathbf{k})+t(\mathbf{i}-\mathbf{j}+\mathbf{k}) \\ & =(1+t) \mathbf{i}+(2-t) \mathbf{j}+(1+t) \mathbf{k}\end{aligned}$
$\therefore$ Projection of $\mathbf{r}$ on $\mathbf{c}=\frac{\mathbf{r} \cdot \mathbf{c}}{|\mathbf{c}|}$
$\frac{1}{\sqrt{3}}=\frac{\left[\begin{array}{c}\{(1+t) \mathbf{i}+(2-t) \mathbf{j}+(1+t) \mathbf{k}\} \\ \cdot(\mathbf{i}+\mathbf{j}-\mathbf{k})\end{array}\right]}{\sqrt{1^2+1^2+(-1)^2}}$
$\Rightarrow \frac{1}{\sqrt{3}}=\frac{1+t+2-t-(1+t)}{\sqrt{3}}$
$\Rightarrow \quad 1=2-t$
$\Rightarrow \quad t=1$
On putting $t=1$ in Eq. (i), we get $\mathbf{r}=2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.