Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

Let λ, a=λi^+j^-k^ and b=3i^-j^+2k^. Let c be a vector such that a+b+c×c=0, a·c=-17 and b·c=-20. Then c×λi^+j^+k^2 is equal to

MathematicsVector AlgebraJEE MainJEE Main 2023 (12 Apr Shift 1)
Options:
  • A 46
  • B 53
  • C 62
  • D 49
Solution:
1647 Upvotes Verified Answer
The correct answer is: 46

Given that

a=λi^+j^-k^

b=3i^-j^+2k^

Also a+b+c×c=0

ka+b=c

a·c=-17 and b·c=-20

Now, Take a·c=-17

kλi^+j^-k^·λi^+j^-k^+3i^-j^+2k^=-17

kλ2+3λ+0-1=-17

 kλ2+3λ-1=-17 ....(1)

Similarly, on taking b·c=-20, we get, 

k3i^-j^+2k^·λi^+j^-k^+3i^-j^+2k^=-20

k3λ+9+2=-20

k3λ+11=-20  ...(2)

Now on solving equation 1 & 2 we get,

20λ2+9λ-207=0

λ=3, -6920

For λ=3, k=-1

c=-1a+b

-λ+3i^+k^=-6i^-k^

c×λi^+j^+k^=i^j^k^-60-1311=i^-3j^+6k^

c×λi^+j^+k^2=46

Hence this is the correct option.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.