Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let a random variable $\mathrm{X}$ have a Binomial distribution with mean 8 and variance 4 . If $P(X \leq 2)=\frac{K}{2^{16}}$, then $K$ is
MathematicsProbabilityMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $17$
  • B $121$
  • C $136$
  • D $137$
Solution:
1839 Upvotes Verified Answer
The correct answer is: $137$
Let $\mathrm{X} \sim \mathrm{B}(\mathrm{n}, \mathrm{p})$
According to the given conditions, Mean $=n p=8$ and variance $=n p q=4$ $\Rightarrow \mathrm{p}=\mathrm{q}=\frac{1}{2}$ and $\mathrm{n}=16$
$P(X \leq 2)=\frac{K}{2^{16}}$
$\Rightarrow \mathrm{P}(\mathrm{X}=0)+\mathrm{P}(\mathrm{X}=1)+\mathrm{P}(\mathrm{X}=2)=\frac{\mathrm{K}}{2^{16}}$
$\begin{aligned}
\therefore \quad{ }^{16} \mathrm{C}_0\left(\frac{1}{2}\right)^0\left(\frac{1}{2}\right)^{16}+{ }^{16} \mathrm{C}_1\left(\frac{1}{2}\right)^1 & \left(\frac{1}{2}\right)^{15} \\
& +{ }^{16} \mathrm{C}_2\left(\frac{1}{2}\right)^2\left(\frac{1}{2}\right)^{14}=\frac{\mathrm{K}}{2^{16}}
\end{aligned}$
$\begin{array}{ll}
\therefore & \frac{1+16+120}{2^{16}}=\frac{K}{2^{16}} \\
\therefore & K=137
\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.