Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{ABC}$ be a triangle and $\mathrm{P}$ be a point inside $\mathrm{ABC}$ such that $\overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{0}$. The ratio of the area of triangle $\mathrm{ABC}$ to that of $\mathrm{APC}$ is-
MathematicsProperties of TrianglesKVPYKVPY 2010 (SB/SX)
Options:
  • A 2
  • B $\frac{3}{2}$
  • C $\frac{5}{3}$
  • D 3
Solution:
2676 Upvotes Verified Answer
The correct answer is: 3


$\overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=0$
$(\overrightarrow{\mathrm{a}}-\overrightarrow{\mathrm{p}})+2(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{p}})+3(\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{p}})=0$
$\overrightarrow{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}+3 \overrightarrow{\mathrm{c}}}{6}$
$$
\begin{array}{l}
\frac{\text { Area } \Delta \mathrm{ABC}}{\text { Area } \Delta \mathrm{APC}}=\frac{\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}|}{\frac{1}{2}|\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{p}}+\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{c}}+\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}|} \\
\text { put } \overrightarrow{\mathrm{p}}=\frac{\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}+3 \overrightarrow{\mathrm{c}}}{6} \\
\text { ratio }=3
\end{array}
$$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.