Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathrm{ABC}$ be an acute scalene triangle, and $\mathrm{O}$ and $\mathrm{H}$ be its circumcentre and orthocenter respectively. Further let $\mathrm{N}$ be the midpoint of OH. The value of the vector sum $\overrightarrow{\mathrm{NA}}+\overrightarrow{\mathrm{NB}}+\overrightarrow{\mathrm{NC}}$ is
Options:
Solution:
1990 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{2} \overrightarrow{\mathrm{HO}}$
Circumcenter (origin $\mathrm{O}$ )

$(\overrightarrow{\mathrm{O}})=\left(\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{3}\right) ; \mathrm{H}=\left(\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}\right)$
$\overrightarrow{\mathrm{N}}=\frac{1}{4}(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$

$(\overrightarrow{\mathrm{O}})=\left(\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{3}\right) ; \mathrm{H}=\left(\frac{\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}}}{2}\right)$
$\overrightarrow{\mathrm{N}}=\frac{1}{4}(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.