Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let \(\alpha, \beta\) be the roots of the equation \(a x^2+b x+c=0, a, b, c\) real and \(s_n=\alpha^n+\beta^n\) and \(\left|\begin{array}{ccc}3 & 1+s_1 & 1+s_2 \\ 1+s_1 & 1+s_2 & 1+s_3 \\ 1+s_2 & 1+s_3 & 1+s_4\end{array}\right|=k \frac{(a+b+c)^2}{a^4}\) then \(k=\)
MathematicsDeterminantsWBJEEWBJEE 2023
Options:
  • A \(b^2-4 a c\)
  • B \(b^2+4 a c\)
  • C \(b^2+2 a c\)
  • D \(4 a c-b^2\)
Solution:
1948 Upvotes Verified Answer
The correct answer is: \(b^2-4 a c\)
Hint: \(\left|\begin{array}{ccc}3 & 1+s_1 & 1+s_2 \\ 1+s_1 & 1+s_2 & 1+s_3 \\ 1+s_2 & 1+s_3 & 1+s_4\end{array}\right|\)
\(=\left|\begin{array}{ccc}
1+1+1 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\
1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\
1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4
\end{array}\right|\)
\(\begin{aligned} & =\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2\end{array}\right| \times\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2\end{array}\right| \\ & =\{(1-\alpha)(\alpha-\beta)(1-\beta)\}^2 \\ & =(1-(\alpha+\beta)+\alpha \beta)^2(\alpha-\beta)^2 \\ & =\left(1+\frac{b}{a}+\frac{c}{a}\right)^2\left(\frac{b^2}{a^2}-\frac{4 c}{a}\right) \\ & =\frac{(a+b+c)^2}{a^2} \times \frac{b^2-4 a c}{a^2}=\left(b^2-4 a c\right) \frac{(a+b+c)^2}{a^4} \\ & \therefore k=b^2-4 a c\end{aligned}\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.