Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\alpha$ and $\beta$ be the roots of the quadratic equation $a x^2+b x+c=0$. Observe the lists given below


The correct match of List-I from List-II is
(i) (ii) (iii) (iv)
MathematicsQuadratic EquationTS EAMCETTS EAMCET 2008
Options:
  • A $\begin{array}{llll}\mathrm{E} & \mathrm{B} & \mathrm{D} & \mathrm{F}\end{array}$
  • B $\begin{array}{llll}\mathrm{E} & \mathrm{B} & \mathrm{A} & \mathrm{D}\end{array}$
  • C $\begin{array}{llll}\mathrm{E} & \mathrm{D} & \mathrm{B} & \mathrm{F}\end{array}$
  • D E $\quad$ B $\quad$ D $\quad$ A
Solution:
2881 Upvotes Verified Answer
The correct answer is: E $\quad$ B $\quad$ D $\quad$ A
Using the condition that the roots of $a x^2+b x+c=0$ may be in the ratio $m: n$ is $m n b^2=a c(m+n)^2$.
(i) If the roots are $\alpha=\beta$, then
$$
\begin{aligned}
\alpha \cdot \alpha b^2 & =a c(\alpha+\alpha)^2 \\
\Rightarrow \quad b^2 & =4 a c
\end{aligned}
$$
$$
\begin{aligned}
& \Rightarrow \quad b^2=4 a c \\
& \text { (ii) If the roots are } \alpha=2 \beta \text {, then } \\
& \\
& \Rightarrow \quad \beta \cdot 2 \beta b^2=a c(\beta+2 \beta)^2 \\
& 2 b^2=9 a c
\end{aligned}
$$
(iii) If the roots are $\alpha=3 \beta$, then
$$
\Rightarrow \quad \begin{aligned}
\beta \cdot 3 \beta b^2 & =a c(\beta+3 \beta)^2 \\
\Rightarrow \quad 3 b^2 & =16 a c
\end{aligned}
$$
(iv) If the roots are $\alpha=\beta^2$, then
$$
\begin{aligned}
& \left(a^2 c\right)^{\frac{1}{2+1}}+\left(a c^2\right)^{\frac{1}{2+1}}=-b \\
\Rightarrow \quad & \left(a^2 c\right)^{\frac{1}{3}}+\left(a c^2\right)^{\frac{1}{3}}=-b
\end{aligned}
$$
Hence, option (d) is correct.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.