Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\alpha$ be the period of $3 \sin \frac{\pi x}{3}-\cos \frac{\pi x}{2}+\tan \frac{\pi x}{4}, \beta$ be the period of $\sin ^2\left(\frac{\pi}{7}+\frac{x}{4}\right)-\sin ^2\left(\frac{\pi}{7}-\frac{x}{4}\right)$, and $\gamma$ be the period of $\cos ^4 x+\sin ^4 x$. Then $\frac{\alpha \gamma}{\beta}=$
Options:
Solution:
1217 Upvotes
Verified Answer
The correct answer is:
$\frac{3}{2}$
Period of $3 \sin \frac{\pi x}{3}-\cos \frac{\pi x}{2}+\tan \frac{\pi x}{4}$ is $12(\alpha)$, period of $\sin ^2\left(\frac{\pi}{7}+\frac{x}{4}\right)-\sin ^2 \frac{\pi}{4}-\frac{x}{4}$ is $4 \times \pi(\beta)$ and period of $\cos ^4(x)$ $+\sin ^4(\mathrm{x})$ is $\frac{\pi}{2}(\gamma)$
Hence, $\frac{\alpha \gamma}{\beta}=\frac{12 \times \frac{\pi}{2}}{4 \pi}=\frac{3}{2}$
Hence, $\frac{\alpha \gamma}{\beta}=\frac{12 \times \frac{\pi}{2}}{4 \pi}=\frac{3}{2}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.