Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{\alpha}+3 \vec{\beta}$ is collinear with $\vec{\gamma}$ and $\vec{\beta}+2 \vec{\gamma}$ is collinear with $\vec{\alpha}$, then $\vec{\alpha}+3 \vec{\beta}+6 \vec{\gamma}$ is
Options:
Solution:
2872 Upvotes
Verified Answer
The correct answer is:
$\overrightarrow{0}$
$\vec{\alpha}+3 \vec{\beta}=\mathrm{k}_{1} \vec{\gamma} \Rightarrow \vec{\beta}=\frac{\mathrm{k}_{1}}{3} \vec{\gamma}-\frac{\vec{\alpha}}{3}$
$\vec{\beta}+2 \vec{\gamma}=\mathrm{k}_{2} \vec{\alpha} \Rightarrow \vec{\beta}=\mathrm{k}_{2} \vec{\alpha}-2 \vec{\gamma}$
$\Rightarrow \frac{\mathrm{k}_{1} \vec{\gamma}}{3}-\frac{\vec{\alpha}}{3}=\mathrm{k}_{2} \vec{\alpha}-2 \vec{\gamma} \Rightarrow \vec{\alpha}\left(\mathrm{k}_{2}+\frac{1}{3}\right)=\vec{\gamma}\left(\frac{\mathrm{k}_{1}}{3}+2\right) \Rightarrow \mathrm{k}_{2}=-\frac{1}{3}$ and $\frac{\mathrm{k}_{1}}{3}=-2 \Rightarrow \mathrm{k}_{1}=-6$
$\Rightarrow \vec{\alpha}+3 \vec{\beta}+6 \vec{\gamma}=\overrightarrow{0}$
$\vec{\beta}+2 \vec{\gamma}=\mathrm{k}_{2} \vec{\alpha} \Rightarrow \vec{\beta}=\mathrm{k}_{2} \vec{\alpha}-2 \vec{\gamma}$
$\Rightarrow \frac{\mathrm{k}_{1} \vec{\gamma}}{3}-\frac{\vec{\alpha}}{3}=\mathrm{k}_{2} \vec{\alpha}-2 \vec{\gamma} \Rightarrow \vec{\alpha}\left(\mathrm{k}_{2}+\frac{1}{3}\right)=\vec{\gamma}\left(\frac{\mathrm{k}_{1}}{3}+2\right) \Rightarrow \mathrm{k}_{2}=-\frac{1}{3}$ and $\frac{\mathrm{k}_{1}}{3}=-2 \Rightarrow \mathrm{k}_{1}=-6$
$\Rightarrow \vec{\alpha}+3 \vec{\beta}+6 \vec{\gamma}=\overrightarrow{0}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.