Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let α, β be two roots of the quadratic equation x2+ax-b=0, b0. If the straight line xcosθ+ysinθ=c touches the curve xαn+yβn=2 at the point α,β, then ab2+2b=
MathematicsApplication of DerivativesTS EAMCETTS EAMCET 2020 (09 Sep Shift 1)
Options:
  • A 12c2
  • B 4c2
  • C 2c2
  • D 1c2
Solution:
2211 Upvotes Verified Answer
The correct answer is: 4c2

Given α and β are roots of x2+ax-b=0

α+β=-a  ...(1)

αβ=-b  ...(2)

Now, differentiating the curve xαn+yβn=2

nαxαn-1+nβyβn-1dydx=0

at x=α and y=β

dydx=-βα  ...3

Now, xcosθ+ysinθ=c

y=-xcotθ+csinθ

As, -cotθ=-βα

y=-βαx+csinθ

Put =α, β

β=c2sinθ and α=c2cosθ  ...4

Now, ab2+2b=

By Equations (1) & (2)

-α+β-αβ2-2αβ

α2+β2+2αβ-2αβ(αβ)2

α2+β2α2β2

By Equation (4)

c24cos2θ+c24sin2θc2×c24cos2θ4sin2θ

c24cos2θ+sin2θcos2θsin2θc416cos2θsin2θ4c2

ab2+2b=4c2

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.