Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $C$ be the circle of minimum area touching the parabola $y=6-x^2$ and the lines $y=\sqrt{3}|x|$. Then, which one of the following points lies on the circle $C$ ?
MathematicsCircleJEE MainJEE Main 2024 (06 Apr Shift 1)
Options:
  • A $(1,2)$
  • B $(1,1)$
  • C $(2,2)$
  • D $(2,4)$
Solution:
2990 Upvotes Verified Answer
The correct answer is: $(2,4)$

Equation of circle
$\mathrm{x}^2+(\mathrm{y}-(6-\mathrm{r}))^2=\mathrm{r}^2$
touches $\sqrt{3} \mathrm{x}-\mathrm{y}=0$
$\begin{aligned}
& \mathrm{p}=\mathrm{r} \\
& \frac{|0-(6-\mathrm{r})|}{2}=\mathrm{r} \\
& |\mathrm{r}-6|=2 \mathrm{r} \\
& \mathrm{r}=2
\end{aligned}$
$\therefore$ Circle $\mathrm{x}^2+(\mathrm{y}-4)^2=4$
$(2,4)$ Satisfies this equation

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.