Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\cos (\alpha+\beta)=\frac{4}{5}$ and let $\sin (\alpha-\beta)=\frac{5}{13}$, where $0 \leq \alpha, \beta \leq \frac{\pi}{4}$, then $\tan 2 \alpha=$
MathematicsTrigonometric EquationsJEE Main
Options:
  • A
    $\frac{56}{33}$
  • B
    $\frac{19}{12}$
  • C
    $\frac{20}{7}$
  • D
    $\frac{25}{16}$
Solution:
1348 Upvotes Verified Answer
The correct answer is:
$\frac{56}{33}$
$\begin{array}{ll}\cos (\alpha+\beta)=\frac{4}{5} & \Rightarrow \tan (\alpha+\beta)=\frac{3}{4} \\ \sin (\alpha-\beta)=\frac{5}{13} & \Rightarrow \tan (\alpha-\beta)=\frac{5}{12} \\ \tan 2 \alpha=\tan (\alpha+\beta+\alpha-\beta)=\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \frac{5}{12}}=\frac{56}{33}\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.