Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\cos (\alpha+\beta)=\frac{4}{5}$ and $\sin (\alpha-\beta)=\frac{5}{13}$, where $0 \leq \alpha, \beta \leq \frac{\pi}{4}$, then $\tan 2 \alpha=$
Options:
Solution:
2831 Upvotes
Verified Answer
The correct answer is:
$\frac{56}{33}$
$\begin{aligned} & \cos (\alpha+\beta)=\frac{4}{5} \Rightarrow \tan (\alpha+\beta)=\frac{3}{4} \\ & \sin (\alpha-\beta)=\frac{5}{13} \Rightarrow \tan (\alpha-\beta)=\frac{5}{12} \\ & \tan 2 \alpha=\tan \{(\alpha+\beta)+(\alpha-\beta)\}=\frac{\tan (\alpha+\beta)+\tan (\alpha-\beta)}{1-\tan (\alpha+\beta) \cdot \tan (\alpha-\beta)} \\ & =\frac{\frac{3}{4}+\frac{5}{12}}{1-\frac{3}{4} \times \frac{5}{12}}=\frac{56}{33}\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.