Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $D=R-\{0,1\}$ and $f: D \rightarrow D, g: D \rightarrow D$ and $h: D \rightarrow D$ be three functions defined by $f(x)=\frac{1}{x} ; g(x)=1-x$ and $h(x)=\frac{1}{1-x}$. If $j: D \rightarrow D$ is such that (gojof) $(x)=f(x)$ for all $x \in D$, then which one of the following is $j(x)$ ?
MathematicsFunctionsAP EAMCETAP EAMCET 2019 (21 Apr Shift 1)
Options:
  • A $(f \circ g)(x)$
  • B $f(x)$
  • C $g(x)$
  • D $(g \circ h)(x)$
Solution:
1097 Upvotes Verified Answer
The correct answer is: $g(x)$
We have,
$\begin{aligned}
& (\text { goj of })(x)=f(x) \text { for all } x \in D \\
& \Rightarrow \quad g((j o f)(x))=\frac{1}{x} \\
& \Rightarrow \quad 1-(j o f)(x)=\frac{1}{x} \\
& \Rightarrow \quad 1-j(f(x))=\frac{1}{x} \\
& \Rightarrow \quad 1-j\left(\frac{1}{x}\right)=\frac{1}{x} \\
& \Rightarrow \quad j\left(\frac{1}{x}\right)=1-\frac{1}{x} \\
& \Rightarrow \quad j(x)=1-x=g(x) \\
\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.