Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let E1:x2a2+y2 b2=1, a>b. Let E2 be another ellipse such that it touches the end points of major axis of E1 and the foci of E2 are the end points of minor axis of E1. If E1 and E2 have same eccentricities, then its value is:
MathematicsEllipseJEE MainJEE Main 2021 (22 Jul Shift 1)
Options:
  • A -1+52
  • B -1+82
  • C -1+32
  • D -1+62
Solution:
1573 Upvotes Verified Answer
The correct answer is: -1+52

Given ellipse is E1:x2a2+y2b2=1, a>b and E2 is another ellipse which touches the end points of the major axis of E1 and foci of E2 are at the minor axis of E1, thus the two ellipses are given by the following diagram.

Since, the ellipse E2 touches the major axis of the ellipse E1, hence, the minor axis of the ellipse E2 is a1=a.

Now, let the major axis of the ellipse E2 is b1=c and it is obvious from the diagram and the given conditions that b1>a1.

We know that the eccentricity of an ellipse x2A2+y2B2=1, A>B is 1-B2A2.

Thus, for the ellipse E1, we have e=1-b2a2 and for the ellipse E2, we have e1=1-a2c2.

Given, e=e1

1-b2a2=1-a2c2

 1-b2a2=1-a2c2

 b2a2=a2c2

 c2=a4b2

 c=a2b   ...i

Also, given that the foci of E2 are the end points of the minor axis of E1, thus b=ce

 c=be   ...ii

From the above two equations, we get be=a2 b

 e=b2a2

Now, using the definition of eccentricity, we get e=b2a2=1-e2

 e2+e-1=0

Now, applying the Sridharacharya's formula for the roots of a quadratic equation, i.e. if ax2+bx+c=0, a0, then x=-b±b2-4ac2a, we get

e=-1±12-4×1×-12×1

 e=-1±1+42

 e=-1±52

But, eccentricity can never be negative, hence e=-1+52.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.