Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let f:[-1,1]R be defined as f(x)=ax2+bx+c for all x[-1, 1], where a, b, cR such that f(-1)=2, f'(-1)=1 and for x(-1, 1) the maximum value of f"(x) is 12. If f(x)α, x-1, 1, then the least value of α is equal to
MathematicsApplication of DerivativesJEE MainJEE Main 2021 (17 Mar Shift 2)
Solution:
2909 Upvotes Verified Answer
The correct answer is: 5

Given f:[-1, 1]R, f(x)=ax2+bx+c, f'(x)=2ax+b and f''(x)=2a

f(-1)=a-b+c=2   ...1,

f'(-1)=-2a+b=1   ...2 and

f''(x)=2a

Given the maximum value of f''(x)=2a=12  a=14,

From the equations 1 and 2 we get b=32 and c=134.

 f(x)=x24+3x2+134

We know that, the vertex of the quadratic Ax2+Bx+C is at -B2A, -B2-4AC4A

Thus, the vertex of x24+3x2+134 is at -3, 1, hence both the numbers ±1 are on the same side of the vertex and the graph of fx is given below.

For, x[-1, 1], we have f-1=2 & f1=5

2f(x)5

Least value of α is 5.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.