Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{f}:[-1,2] \rightarrow[0, \infty)$ be a continuous function such that $\mathrm{f}(x)=\mathrm{f}(1-x), \forall x \in[-1,2]$
Let $\mathrm{R}_1=\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$ and $\mathrm{R}_2$ be the area of the region bounded by $y=\mathrm{f}(x), x=-1, x=2$ and the $\mathrm{X}$-axis, then $\mathrm{R}_2$ is
MathematicsContinuity and DifferentiabilityMHT CETMHT CET 2023 (11 May Shift 2)
Options:
  • A $\frac{1}{2} R_1$
  • B $2 R_1$
  • C $3 R_1$
  • D $\frac{1}{3} R_1$
Solution:
2373 Upvotes Verified Answer
The correct answer is: $2 R_1$
Given that $\mathrm{f}(x)=\mathrm{f}(1-x)$ and $\mathrm{R}_1=\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$
$\begin{aligned}
& \therefore \quad \mathrm{R}_1=\int_{-1}^2(1-x) \mathrm{f}(1-x) \mathrm{d} x \\
& \quad \cdots\left[\because \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(x) \mathrm{d} x=\int_1^b \mathrm{f}(\mathrm{a}+\mathrm{b}-x) \mathrm{d} x\right]
\end{aligned}$
$\mathrm{R}_1=\int_{-1}^2 \mathrm{f}(x) \mathrm{d} x-\int_{-1}^2 x \mathrm{f}(x) \mathrm{d} x$
... $[\because f(x)=f(1-x)]$
$\therefore \quad \mathrm{R}_1=\int_{-1}^2 \mathrm{f}(x) \overline{\mathrm{d} x}-\mathrm{R}_1$
$\therefore \quad 2 \mathrm{R}_1=\int_{-1}^2 \mathrm{f}(x) \mathrm{d} x$
Note that $\mathrm{R}_2=\int_{-1}^2 \mathrm{f}(x) \mathrm{d} x=2 \mathrm{R}_1$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.