Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(1)=-2$ and $f^{\prime}(x) \geq 4.2$ for $1 \leq x \leq 6$. The possible value of $f(6)$ lies in the interval :
MathematicsApplication of DerivativesJEE MainJEE Main 2013 (25 Apr Online)
Options:
  • A
    $[15,19)$
  • B
    $(-\infty, 12)$
  • C
    $[12,15)$
  • D
    $[19, \infty)$
Solution:
1647 Upvotes Verified Answer
The correct answer is:
$[19, \infty)$
Given $f(1)=-2$ and $f^{\prime}(x) \geq 4.2$ for $1 \leq x \leq 6$
Consider $f^{\prime}(x)=\frac{f(x+h)-f(x)}{h}$ $\Rightarrow f(x+h)-f(x)=f^{\prime}(x) \cdot h \geq(4.2) h$
So, $f(x+h) \geq f(x)+(4.2) h$
put $x=1$ and $h=5$, we get
$f(6) \geq f(1)+5(4.2) \Rightarrow f(6) \geq 19$
Hence $f(6)$ lies in $[19, \infty)$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.