Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined as $f(x)=\frac{1}{2}-\tan \left(\frac{\pi x}{2}\right)$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be defined $g(x)=\sqrt{3+4 x-4 x^2}$. If A, B, C are subsets of $\mathbb{R}$ and $f$ is an onto function then the range of the function $f(x)$ is
MathematicsFunctionsTS EAMCETTS EAMCET 2022 (19 Jul Shift 2)
Options:
  • A $(-\infty, \infty)$
  • B $[0, \infty)$
  • C $\left[-\frac{1}{2}, \frac{3}{2}\right]$
  • D $[-1,1]$
Solution:
2506 Upvotes Verified Answer
The correct answer is: $\left[-\frac{1}{2}, \frac{3}{2}\right]$
Since $f$ is an onto function
Thus domain of $\mathrm{g}(\mathrm{x})$ will be range of $\mathrm{f}(\mathrm{x})$
Now, $3+4 \mathrm{x}-4 \mathrm{x}^2 \geq 0$ to define $\mathrm{g}(\mathrm{x})$
$$
\Rightarrow 4 \mathrm{x}^2-4 \mathrm{x}-3 \mathrm{x} 0
$$
On solving we get $\mathrm{x} \in\left[-\frac{1}{2}, \frac{3}{2}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.