Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f$, be a continuous function in $[0,1]$, then $\lim_{n \rightarrow \infty} \sum_{j=0}^n \frac{1}{n} f\left(\frac{j}{n}\right)$ is
MathematicsDefinite IntegrationWBJEEWBJEE 2020
Options:
  • A $\frac{1}{2} \int_{0}^{\frac{1}{2}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
  • B $\int_{\frac{1}{2}}^{1} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
  • C $\int_{0}^{1} f(x) d x$
  • D $\int_{0}^{\frac{1}{2}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
Solution:
1716 Upvotes Verified Answer
The correct answer is: $\int_{0}^{1} f(x) d x$

\(\lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{1}{n} f\left(\frac{i}{n}\right)\)
Let \(1 / n \rightarrow d x\)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.