Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f$ be a function defined on the set of all positive integers such that $f(\mathrm{xy})=f(\mathrm{x})+f(\mathrm{y})$ for all positive integers $\mathrm{x}, \mathrm{y}$. If $f(12)=24$ and $f(8)=15$, the value of $f(48)$ is
MathematicsFunctionsKVPYKVPY 2016 (SA)
Options:
  • A 31
  • B 32
  • C 33
  • D 34
Solution:
1664 Upvotes Verified Answer
The correct answer is: 34
$f(x y)=f(x)+f(y)$
$\Rightarrow f(x)=\log _{a} x$
So, $f(12)=24$
$\Rightarrow \log _{a} 12=24$
$\Rightarrow 12=a^{24} \& f(8)=15$
$\Rightarrow \log _{a} 8=15$
$\Rightarrow 8=a^{15} \Rightarrow 2=a^{5}$
So, $f(48)=\log _{a} 48=\log _{a} 12+\log _{a} 4$
$=\log _{a} 12+\log _{a} 2^{2}$
$=24+2 \cdot 5$
$=34$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.