Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let f be any continuous function on 0, 2 and twice differentiable on 0, 2. If f0=0, f1=1 and f2=2, then :
MathematicsApplication of DerivativesJEE MainJEE Main 2021 (31 Aug Shift 2)
Options:
  • A f"x>0 for all x0, 2
  • B f'x=0 for some x0, 2
  • C f"x=0 for some x0, 2
  • D f"x=0 for all x0, 2
Solution:
1354 Upvotes Verified Answer
The correct answer is: f"x=0 for some x0, 2

Given f0=0, f1=1 and f2=2

Let, hx=fx-x

Clearly hx, will be continuous and twice differentiable on 0, 2.

Now, h0=h1=h2=0

By Rolle's mean value theorem in 0, 1, we get

h'c1=0   

f'c1-1=0   

f'c1=1, where c10, 1

Also, in the interval 1, 2

h'c2=0

f׀c2-1=0

f'c2=1, where c21, 2

Now, use Rolle's theorem on c1, c2 for h'x

 We have, h''(c)=0

f''(c)=0, where cc1, c2

Hence,  f''(c)=0 for some x0, 2.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.