Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let f be any function continuous on a,b and twice differentiable on a,b . If all xa,b,f'x>0 and f''x<0 , then for any ca,b,fc-fafb-fc
MathematicsDifferentiationJEE MainJEE Main 2020 (09 Jan Shift 1)
Options:
  • A b+ab-a
  • B 1
  • C b-cc-a
  • D c-ab-c
Solution:
2072 Upvotes Verified Answer
The correct answer is: c-ab-c

Let’s use LMVT for xa,c

fc-f(a)c-a=f'α,αa,c

Also use LMVT for xc,b

fb-f(c)b-c=f'β,βc,b

f''x<0f'x is decreasing

f'α>f'β

fc-f(a)c-a>fb-f(c)b-c

fc-f(a)fb-f(c)>c-ab-c ( f(x) is increasing)

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.