Search any question & find its solution
Question:
Answered & Verified by Expert
Let $f: R-\left\{\frac{-1}{2}\right\} \rightarrow R$ be defined by $f(x)=\frac{x-2}{2 x+1}$. If $\alpha$ and $\beta$ satisfy the equation $f(f(x))=-x$, then $4\left(\alpha^2+\beta^2\right)=$
Options:
Solution:
1665 Upvotes
Verified Answer
The correct answer is:
$17$
$f(x)=\frac{x-2}{2 x+1}$
$f(f(x))=-x$ [Given]
$\Rightarrow \quad \frac{f(x)-2}{2(f(x))+1}=-x$
$\Rightarrow \quad \frac{\frac{x-2}{2 x+1}-2}{\frac{2 x-4}{2 x+1}+1}=-x$
$\Rightarrow \frac{x-2-4 x-2}{2 x-4+2 x+1}=-x$
$\Rightarrow \quad \frac{-3 x-4}{4 x-3}=-x \Rightarrow \frac{3 x+4}{4 x-3}=x$
$\Rightarrow \quad 3 x+4=4 x^2-3 x$
$\begin{aligned} & \Rightarrow \quad 4 x^2-6 x-4=0 \\ & \Rightarrow \quad 2 x^2-3 x-2=0\end{aligned}$
Now, $\alpha+\beta=\frac{3}{2}, \alpha \beta=-1$
Now, $(\alpha+\beta)^2=\alpha^2+\beta^2+2 \alpha \beta$
$\Rightarrow \quad \frac{9}{4}=\alpha^2+\beta^2-2 \quad[\because \alpha \beta=-1]$
$\begin{aligned} & \Rightarrow \alpha^2+\beta^2=\frac{17}{4} \\ & \Rightarrow 4\left(\alpha^2+\beta^2\right)=17\end{aligned}$
$f(f(x))=-x$ [Given]
$\Rightarrow \quad \frac{f(x)-2}{2(f(x))+1}=-x$
$\Rightarrow \quad \frac{\frac{x-2}{2 x+1}-2}{\frac{2 x-4}{2 x+1}+1}=-x$
$\Rightarrow \frac{x-2-4 x-2}{2 x-4+2 x+1}=-x$
$\Rightarrow \quad \frac{-3 x-4}{4 x-3}=-x \Rightarrow \frac{3 x+4}{4 x-3}=x$
$\Rightarrow \quad 3 x+4=4 x^2-3 x$
$\begin{aligned} & \Rightarrow \quad 4 x^2-6 x-4=0 \\ & \Rightarrow \quad 2 x^2-3 x-2=0\end{aligned}$
Now, $\alpha+\beta=\frac{3}{2}, \alpha \beta=-1$
Now, $(\alpha+\beta)^2=\alpha^2+\beta^2+2 \alpha \beta$
$\Rightarrow \quad \frac{9}{4}=\alpha^2+\beta^2-2 \quad[\because \alpha \beta=-1]$
$\begin{aligned} & \Rightarrow \alpha^2+\beta^2=\frac{17}{4} \\ & \Rightarrow 4\left(\alpha^2+\beta^2\right)=17\end{aligned}$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.