Search any question & find its solution
Question:
Answered & Verified by Expert
Let $\mathrm{f}: \mathrm{R}-\left\{-\frac{4}{3}\right\} \rightarrow \mathrm{R}$ be a function defined as
$(x)=\frac{4 x}{3 x+4}$. The inverse of $f$ is the map
: Range $\mathbf{f} \rightarrow \mathbf{R}-\left\{-\frac{4}{3}\right\}$ given by
(a) $g(y)=\frac{3 y}{3-4 y}$
(b) $g(y)=\frac{4 y}{4-3 y}$
(c) $g(y)=\frac{4 y}{3-4 y}$
(d) $g(y)=\frac{3 y}{4-3 y}$
$(x)=\frac{4 x}{3 x+4}$. The inverse of $f$ is the map
: Range $\mathbf{f} \rightarrow \mathbf{R}-\left\{-\frac{4}{3}\right\}$ given by
(a) $g(y)=\frac{3 y}{3-4 y}$
(b) $g(y)=\frac{4 y}{4-3 y}$
(c) $g(y)=\frac{4 y}{3-4 y}$
(d) $g(y)=\frac{3 y}{4-3 y}$
Solution:
2900 Upvotes
Verified Answer
(b)
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.