Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f: R \rightarrow R$ be a function such that $f(x+y)=f(x)+f(y), \forall x, y \in \mathbb{R}$

If $\mathrm{f}(\mathrm{x})$ is differentiable at $\mathrm{x}=0$, then which one of the following is incorrect?
MathematicsContinuity and DifferentiabilityJEE Main
Options:
  • A $\mathrm{f}(\mathrm{x})$ is continuous, $\forall \mathrm{x} \in \mathrm{R}$
  • B $\mathrm{f}^{\prime}(\mathrm{x})$ is constant, $\forall \mathrm{x} \in \mathrm{R}$
  • C $\mathrm{f}(\mathrm{x})$ is differentiable, $\forall \mathrm{x} \in \mathrm{R}$
  • D $\mathrm{f}(\mathrm{x})$ is differentiable only in a finite interval containing zera.
Solution:
2662 Upvotes Verified Answer
The correct answer is: $\mathrm{f}(\mathrm{x})$ is differentiable only in a finite interval containing zera.
Let $f(x+y)=f(x)+f(y), \forall x, y \in R$

Put $x=0=y$

$\Rightarrow f(0)=f(0)+f(0)$

$\Rightarrow f(0)=0$

Now, $f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h}$

$f^{\prime \prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)}{h}$

Now, $f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

$=\lim _{h \rightarrow 0} \frac{f(x)+f(h)-f(x)}{h}$

$$

\begin{array}{l}

\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\lim _{\mathrm{h} \rightarrow 0} \frac{\mathrm{f}(\mathrm{h})}{\mathrm{h}}=\mathrm{f}^{\prime}(0) \\

\Rightarrow \mathrm{f}(\mathrm{x})=\mathrm{x} \mathrm{f}(0)+\mathrm{C}

\end{array}

$$

But $f(0)=0$

$$

\therefore \mathrm{C}=0

$$

Hence, $f(x)=x f(0), \forall x \in R$

Clearly, $\mathrm{f}(\mathrm{x})$ is everywhere continuous and differentiable and $\mathrm{f}^{\prime}(\mathrm{x})$ is constant.

$\forall \mathrm{x} \in \mathrm{R}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.