Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert

Let f:RR be defined as fx=-43x3+2x2+3x, x>0           3xex          ,  x0. Then f is increasing function in the interval

MathematicsApplication of DerivativesJEE MainJEE Main 2021 (22 Jul Shift 1)
Options:
  • A -12, 2
  • B 0, 2
  • C -1, 32
  • D -3, -1
Solution:
2511 Upvotes Verified Answer
The correct answer is: -1, 32

We know that, ddxxn=nxn-1 and ddxex=ex

Hence, ddx-43x3+2x2+3x=-43×3x2+2×2x+3=-4x2+4x+3

And, using product rule, we getddx3xex=3xddxex+3exddxx=3xex+3ex=3exx+1

f'x=-4x2+4x+3,x>03ex(1+x),x0

For x>0, f'(x)=-4x2+4x+3=-2x+12x-3

The sign scheme of f'x is

We know that, if f'x>0 then for those value of x, fx is increasing.

f(x) is increasing in -12, 32.

For x0, f'(x)=3ex(1+x)

As ex>0,  xR

f'(x)>0  x(-1, 0).

So, in complete domain, f(x) is increasing in -1, 0-12, 32=-1, 32.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.