Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let f:RR be defined as fx=e-xsinx. If F:0, 1R is a differentiable function such that Fx=0xftdt, then the value of 01F'(x)+f(x)exdx lies in the interval
MathematicsDefinite IntegrationJEE Main
Options:
  • A 327360,329360
  • B 330360,331360
  • C 331360,334360
  • D 335360,336360
Solution:
1702 Upvotes Verified Answer
The correct answer is: 330360,331360

Given f(x)=e-xsinx

Now, Fx=0xftdt

Using Newton Leibnitz rule i.e. ddxuxvxftdt=fvx·v'x-fux·u'x,

F'(x)=f(x)

Now, I=01F'(x)+f(x)exdx

I=01(f(x)+f(x))·exdx

I=201f(x)·exdx

I=201e-xsinx·exdx

I=201sinxdx

I=2-cosx01

I=2(1-cos1)

Using the expansion of cosx=1-x22!+x44!-x66!+...

I=21-1-12+14!+16!+...

I=1-24!+26!-29!...

1-24!<I<1-24!+26!

1112<I<331360

I1112,331360

I330360,331360.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.