Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f: R \rightarrow R$ be defined by
$f(x)=\left\{\begin{array}{ccc}\alpha+\frac{\sin [x]}{x}, & \text { if } & x>0 \\ 2, & \text { if } & x=0 \\ \beta+\left[\frac{\sin x-x}{x^3}\right], & \text { if } & x < 0\end{array}\right.$
equal to
MathematicsDifferentiationTS EAMCETTS EAMCET 2012
Options:
  • A $\frac{1}{4}$
  • B $4$
  • C $\frac{-3}{4}$
  • D $1$
Solution:
1401 Upvotes Verified Answer
The correct answer is: $\frac{1}{4}$
Given,
$f(x)=\log \left[e^x\left(\frac{x-2}{x+2}\right)^{3 / 4}\right]$
$\Rightarrow f(x)=x+\frac{3}{4}[\log (x-2)-\log (x+2)]$
On differentiating w.r.t. $x$, we get
$\begin{aligned} f^{\prime}(x) & =1+\frac{3}{4}\left(\frac{1}{x-2}-\frac{1}{x+2}\right) \\ & =1+\frac{3}{4}\left(\frac{4}{x^2-4}\right)=1+\frac{3}{x^2-4} \\ \Rightarrow f^{\prime}(0) & =1+\frac{3}{0-4}=\frac{1}{4}\end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.