Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)>0$ for all $x$ and $f^{\prime}(x)$ exists for all $x$. If $f$ is the inverse function of $h$ and $h^{\prime}(x)=\frac{1}{1+\log x} \cdot$ Then, $f^{\prime}(x)$ will be
MathematicsDifferentiationWBJEEWBJEE 2019
Options:
  • A $1+\log (f(x))$
  • B $1+f(x)$
  • C $1-\log (f(x))$
  • D $\log f(x)$
Solution:
2394 Upvotes Verified Answer
The correct answer is: $1+\log (f(x))$
Given,
$$
h\{f(x)\}=x
$$
differentiating w.r.t. $x$, we get
$$
\begin{array}{r}
h^{\prime}\{f(x)\}, f^{\prime}(x)=1 \\
f^{\prime}(x)=\frac{1}{h^{\prime}\{f(x)\}}
\end{array}
$$
$\begin{aligned} \Rightarrow \quad f^{\prime}(x)=\frac{1}{\frac{1}{1+\log \{f(x)\}}} & \\ \Rightarrow \quad\left[\because h^{\prime}(x)=\frac{1}{1+\log x}\right] \\ \Rightarrow & f^{\prime}(x)=1+\log (f(x)) \end{aligned}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.