Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let  fx=1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x, xπ6,π3 . If α and β respectively are the maximum and the minimum values of f, then
MathematicsApplication of DerivativesJEE MainJEE Main 2023 (01 Feb Shift 1)
Options:
  • A β2-2α=194
  • B β2+2α=194
  • C α2-β2=43
  • D α2+β2=92
Solution:
2015 Upvotes Verified Answer
The correct answer is: β2-2α=194

Given:

fx=1+sin2xcos2xsin2xsin2x1+cos2xsin2xsin2xcos2x1+sin2x

Applying C1C1+C2+C3

fx=2+sin2xcos2xsin2x2+sin2x1+cos2xsin2x2+sin2xcos2x1+sin2x

fx=2+sin2x1cos2xsin2x11+cos2xsin2x1cos2x1+sin2x

Applying R2R2-R1 and R3R3-R1

fx=2+sin2x1cos2xsin2x010001

fx=2+sin2x1=2+sin2x

Now, for 

xπ6,π3

2xπ3,2π3

sin2x32,1

2+sin2x2+32,3

Hence,

β=2+32

α=3

So,

β2-2α=4+34+23-23=194

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.