Search any question & find its solution
Question:
Answered & Verified by Expert
Let $f(x)=\frac{x}{\left(1+x^n\right)^{1 / n}}$ for $n \geq 2$ and $g(x)=\underbrace{(f \circ f o \ldots o f)}_{f \text { occurs } n \text { times }}(x)$. Then, $\int x^{n-2} g(x) d x$ equals
Options:
Solution:
2054 Upvotes
Verified Answer
The correct answer is:
$\frac{1}{n(n-1)}\left(1+n x^n\right)^{1-\frac{1}{n}}+k$
$\frac{1}{n(n-1)}\left(1+n x^n\right)^{1-\frac{1}{n}}+k$
Here, $\begin{array}{rlrl} & \text { and } & f f(x) & =\frac{f(x)}{\left[1+f(x)^n\right]^{1 / n}}=\frac{x}{\left(1+2 x^n\right)^{1 / n}} \\ & \therefore \quad f f f(x) & =\frac{x}{\left(1+3 x^n\right)^{1 / n}} \\ & \text { Let } & g(x) & =\underbrace{(f \circ f o \ldots o f)}_{n \text { times }}(x)=\frac{x}{\left(1+n x^n\right)^{1 / n}} \\ I & =\int x^{n-2} g(x) d x=\int \frac{x^{n-1} d x}{\left(1+n x^n\right)^{1 / n}} \\ & & =\frac{1}{n^2} \int \frac{n^2 x^{n-1} d x}{\left(1+n x^n\right)^{1 / n}}=\frac{1}{n^2} \int \frac{\frac{d}{d x}\left(1+n x^n\right)}{\left(1+n x^n\right)^{1 / n}} d x\end{array}$
$\therefore \quad I=\frac{1}{n(n-1)}\left(1+n x^n\right)^{1-\frac{1}{n}}+k$.
$\therefore \quad I=\frac{1}{n(n-1)}\left(1+n x^n\right)^{1-\frac{1}{n}}+k$.
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.