Search any question & find its solution
Question:
Answered & Verified by Expert
Let $f(x)=a x^{2}-2+\frac{1}{x}$ where $\alpha$ is a real constant. The smallest $\alpha$ for which $f(x) \geq 0$ for all $x>0$ is
Options:
Solution:
1918 Upvotes
Verified Answer
The correct answer is:
$\frac{2^{5}}{3^{3}}$

$\begin{array}{ll}f(x)=\frac{\alpha x^{3}-2 x+1}{x} \geq 0 & \forall x \in(0, \infty) \\ \Rightarrow \alpha x^{3}-2 x+1 \geq 0 & \forall x \in(0, \infty) \\ \text { Now Let } \phi(x)=\alpha x^{3}-2 x+1 & \end{array}$
$$
\phi^{\prime}(x)=3 \alpha x^{2}-2=0 \quad x=\pm \sqrt{\frac{2}{3 \alpha}}
$$
So Graph of $\phi(\mathrm{x})$
$$
\begin{array}{l}
\phi\left(\sqrt{\frac{2}{3 \alpha}}\right) \geq 0 \\
\sqrt{\frac{2}{3 \alpha}}\left[\alpha \frac{2}{3 \alpha}-2\right]+1 \geq 0
\end{array}
$$
$\sqrt{\frac{2}{3 \alpha}}\left[-\frac{4}{3}\right]+1 \geq 0$
$\sqrt{\frac{2}{3 \alpha}} \leq \frac{3}{4} \Rightarrow \frac{2}{3 \alpha} \leq \frac{9}{16}$
$=\frac{32}{27} \leq \alpha$
Looking for more such questions to practice?
Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.