Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=a x^{2}+b x+c$ such that $f(1)=f(-1)$ and $a, b, c$ are in Arithmetic Progression.
$\mathrm{f}^{\prime}(\mathrm{a}), \mathrm{f}^{\prime}(\mathrm{b}), \mathrm{f}^{\prime}(\mathrm{c})$ are
MathematicsSequences and SeriesNDANDA 2014 (Phase 2)
Options:
  • A A.P.
  • B GP.
  • C H.P.
  • D Arithmetico-geometric progression
Solution:
2349 Upvotes Verified Answer
The correct answer is: A.P.
We have $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{ax}$
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{a})=2 \mathrm{a}^{2}, \mathrm{f}^{\prime}(\mathrm{b})=2 \mathrm{ab}=0$
and $\mathrm{f}^{\prime}(\mathrm{c})=2 \mathrm{ac} \quad(\because \mathrm{b}=0)$
$\therefore \quad \mathrm{f}^{\prime}(\mathrm{a})=2 \mathrm{a}^{2}$
$\mathrm{f}^{\prime}(\mathrm{b})=0$
and $\mathrm{f}^{\prime}(\mathrm{c})=-2 \mathrm{a}^{2} \quad(\because 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{c}=-\mathrm{a})$
Hence $\mathrm{f}^{\prime}(\mathrm{a}), \mathrm{f}^{\prime}(\mathrm{b})$ and $\mathrm{f}^{\prime}(\mathrm{c})$ are in $\mathrm{AP}$.

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.