Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $\mathrm{f}(\mathrm{x})=\max \left\{3, \mathrm{x}^{2}, \frac{1}{\mathrm{x}^{2}}\right\}$ for $\frac{1}{2} \leq \mathrm{x} \leq 2 .$ Then the value of the integral $\int_{1 / 2}^{2} f(x) d x$ is
MathematicsDefinite IntegrationKVPYKVPY 2017 (5 Nov SB/SX)
Options:
  • A $\frac{11}{3}$
  • B $\frac{13}{3}$
  • C $\frac{14}{3}$
  • D $\frac{16}{3}$
Solution:
1436 Upvotes Verified Answer
The correct answer is: $\frac{14}{3}$
Given Integral can be distributed into
$\int_{1 / 2}^{1 / \sqrt{3}} \frac{1}{x^{2}} \cdot d x+\int_{1 / \sqrt{3}}^{\sqrt{3}} 3 d x+\int_{\sqrt{3}}^{2} x^{2} \cdot d x=\frac{14}{3}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.