Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=p x+q$ and $g(x)=m x+n$. Then $f(g(x))=g(f(x))$ is equivalent to
MathematicsFunctionsNDANDA 2017 (Phase 1)
Options:
  • A $f(\mathrm{p})=\mathrm{g}(\mathrm{m})$
  • B $f(\mathrm{q})=\mathrm{g}(\mathrm{n})$
  • C $f(\mathrm{n})=\mathrm{g}(\mathrm{q})$
  • D $f(\mathrm{~m})=\mathrm{g}(\mathrm{p})$
Solution:
2968 Upvotes Verified Answer
The correct answer is: $f(\mathrm{n})=\mathrm{g}(\mathrm{q})$
$\begin{array}{l}\mathrm{f}(\mathrm{x})=\mathrm{px}+\mathrm{q}, \mathrm{g}(\mathrm{x})=\mathrm{mx}+\mathrm{n} \\ \mathrm{f}(\mathrm{g}(\mathrm{x}))=\mathrm{g}(\mathrm{f}(\mathrm{x})) \\ \Rightarrow \mathrm{f}(\mathrm{mx}+\mathrm{n})=\mathrm{g}(\mathrm{px}+\mathrm{q}) \\ & \Rightarrow \mathrm{p}(\mathrm{mx}+\mathrm{n})+\mathrm{q}=\mathrm{m}(\mathrm{px}+\mathrm{q})+\mathrm{n} \\ & \Rightarrow \mathrm{pmx}+\mathrm{pn}+\mathrm{q}=\mathrm{pmx}+\mathrm{mq}+\mathrm{n} \\ & \Rightarrow \mathrm{pn}+\mathrm{q}=\mathrm{mq}+\mathrm{n} \\ & \Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{q})\end{array}$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.