Join the Most Relevant JEE Main 2025 Test Series & get 99+ percentile! Join Now
Search any question & find its solution
Question: Answered & Verified by Expert
Let $f(x)=\sin 2 x+\cos 2 x$ and $g(x)=x^2-1$ then $g(f(x))$ is invertible in the domain
MathematicsFunctionsKCETKCET 2023
Options:
  • A $x \in\left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$
  • B $x \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
  • C $x \in\left[0, \frac{\pi}{4}\right]$
  • D $x \in\left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$
Solution:
2544 Upvotes Verified Answer
The correct answer is: $x \in\left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$
$f(x)=\sin 2 x+\cos 2 x$ and $g(x)=x^2-1$
$\begin{aligned} & g[f(x)]=\left[(\sin 2 x+\cos 2 x)^2-1\right] \\ & g[f(x)]=\sin ^2 2 x+\cos ^2 2 x+\sin 4 x-1 \\ & g[f(x)]=\sin 4 x \\ & \text { Let } g f(x)=y\end{aligned}$
$y=\sin 4 x \quad\left[\because\right.$ Domain of $\sin x$ is $\left.-\frac{\pi}{2}, \frac{\pi}{2}\right]$
$\therefore$ Domain of $\sin 4 x=\left[-\frac{\pi}{8}, \frac{\pi}{8}\right]$

Looking for more such questions to practice?

Download the MARKS App - The ultimate prep app for IIT JEE & NEET with chapter-wise PYQs, revision notes, formula sheets, custom tests & much more.